
Ecosystem and Plant
Health Care with a
Focus on Fall Season
Linda J. Novy & Associates

### A Little Context...1953









When APHIS and THRIPS attack your ROSES begin

SPRAYING THEM WITH

#### **FUNGUSOL**

And you can add

DESTRUXOL'S

PYRENONE

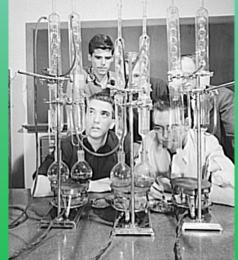

To provide protection against "chewers." Send for one of our FREE bulletins on APHIS

DESTRUXOL CORP., Ltd. Pasadena 1, Calif.

# Trends in Farming and Food Production

|   | 1800s                               | 1900's to                | 1930's                   | 1950's                        | 1970's                    | 1990's                  | 2014 and                        |
|---|-------------------------------------|--------------------------|--------------------------|-------------------------------|---------------------------|-------------------------|---------------------------------|
| L |                                     | 1920's                   | 1940's                   | 1960's                        | 1980's                    | 2000                    | Future                          |
|   | 1821Sulfur used as                  | First pesticide law      |                          | The Chemical Age              | Brundtland Commission     | 1990 Organic Foods      | Clarification of <b>Organic</b> |
|   | · ·                                 | enacted (to protect      |                          |                               |                           | Production Act,         | standards;                      |
|   | · · · · · · · · · · · · · · · · · · | consumer)                | Conservation Service     | Make "War" on the pests       |                           |                         | EPA and Bay Friendly            |
|   | to control arthropod pests          |                          | 1938 <u>Bacillus</u>     | – DDT;                        |                           | Standards               | programs promote                |
|   | 1889 Australia ladybird             |                          | <u>thuringiensis -</u>   | Rampant water/air             | 1970 US EPA formed;       | 1983 Early success with | Sustainable Practices           |
|   | peetle to control cottony-          |                          | used as microbial        | pollution                     | EPA cancels nearly all    | gene transfers          | GMO regulation                  |
| ŀ | cushion scale                       |                          | insecticide              | 9                             | uses of DDT               | (transgenetic)          | Managed Ecosystems              |
|   |                                     |                          | <b>1942 2-4-D</b> and    |                               | Endangered Species        |                         | and Agro ecology                |
|   |                                     |                          | Huge range of            | Agriculture                   | ACT                       |                         | Mass bee kill in                |
|   |                                     |                          | synthesized pesticides   |                               |                           |                         | Washington – focus on           |
|   |                                     |                          | introduced               |                               |                           |                         | pollinators                     |
|   |                                     |                          | 1947 FIFRA early         |                               |                           |                         |                                 |
|   |                                     |                          | pesticide regulation     |                               |                           |                         |                                 |
|   | Crop rotation,                      | Small family Farming     | Overtilling, change to   | Technological                 |                           | Ecologically based Pest | "Conservation"                  |
|   | 1 0,                                | culture; horse drawn     | poor cultural practices, |                               | regulations to manage     | Management: holistic    | Tillage promoted by US          |
|   |                                     | equipment                | Drought, Dustbowl        |                               | pollution; green          | systems, classical IPM  | Soil Conservation               |
|   | C                                   |                          | Exodus from farms        | pesticides," drought,         | chemistry is born         |                         | Service                         |
|   |                                     | ,                        | World War II             | Korean war                    | Reduction in chemical     |                         | Soil Food Web                   |
|   |                                     | WWI                      | US. Post War industries  |                               | applications; Xeriscaping |                         | Ecosystem services              |
| 1 |                                     | Limited commercial       | transition to peacetime  |                               | in California             |                         | Plant Health Care               |
|   |                                     | , ,                      | Postwar Fertilizer       |                               |                           |                         | programs                        |
|   |                                     |                          | Explosion                |                               |                           |                         | BMP's: water                    |
|   |                                     | bone meal; Seed saving,  |                          |                               |                           |                         | management, bio-pest            |
|   |                                     | cover cropping, rotating |                          |                               |                           |                         | management, storm               |
|   |                                     | crops                    |                          |                               |                           |                         | water runoff, air quality,      |
|   |                                     |                          |                          |                               |                           |                         | etc.                            |
| - |                                     | George Washington        | Hometown Victory         | 1962Rachel Carson,            | Arne Naess Deep           | Alice Waters: Food to   | Individual                      |
|   |                                     |                          | Gardens produce up to    | ·                             | -                         | Table                   | environmental                   |
|   |                                     | development and rotation |                          | Alan Chadwick, English        | Leology movement          | Michael Pollen:         | stewardship through an          |
|   |                                     | development and rotation | +1 70 Of all vegetables  | Master Gardener, begins       |                           | Food consciousness      | eco-literate citizenry:         |
|   |                                     |                          |                          | biodynamic farming at         |                           | Elaine Ingham: soil     | YOU!                            |
|   |                                     |                          |                          | UC Santa Cruz ; <b>Rodale</b> |                           | food web and Rodale     | Go baby!                        |
|   |                                     |                          |                          | Press promotes organic        |                           | gardens                 | Gu nany:                        |
|   |                                     |                          |                          |                               |                           | William McDonnough,     |                                 |
|   |                                     |                          |                          | gardening                     |                           | Green Chemistry, Waste  |                                 |
|   |                                     |                          |                          |                               |                           | = food                  |                                 |
|   |                                     |                          |                          |                               |                           | 100 <b>u</b>            |                                 |
| L |                                     |                          |                          |                               |                           |                         |                                 |

## Significant Events in Farming













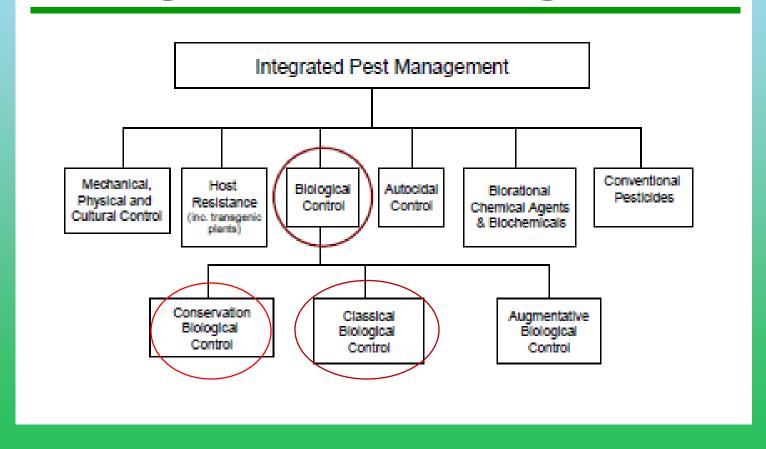



### What Now?

## What are the best ways to steward managed ecosystems?

- Understand that each agricultural, forest, or ornamental ecosystem "...consists of a dynamic web of relationships among crop plants or trees, herbivores, predators, disease organisms, weeds, etc."
- These systems are an ever-changing environment
- Goal: reduce not eliminate damage by pests
- Focus: enhancing the "inherent ecological strength of the system"
- External inputs "...would be added only if they add if they promote long term environmental health of soil biota, crops, and other organisms of the ...systems"
  - Sourced: Ecologically Based Pest Management




# New Goal for the Managed Landscape: "Plant Wellness"

"IPM has been supplanted with plant health care; how do we make plants healthier versus controlling or managing a pest? Plant health care begins with the right plant in the right place, homeowner needs and tolerance levels, proper management, and a good IPM program."

Mike Greene, General Manager, Bartlett Tree Experts
San Rafael, CA

### Plant Health Care and IPM

### Integrated Pest Management





# An Ecological Vision for Your Property

- What is <u>your</u> vision: To create an ecologically thriving garden/landscape?
- Translate <u>your</u> vision to the land:
  - 1. Determine the property's dominant plant community
  - 2. Retain native habitat and natural areas
  - 3. Conserve and increase floral resources
  - 4. Steward soil biota
  - 5. Apply appropriate irrigation



# The Landscape Should Fit The Ecological "Frame" Of The Site

"There is a natural ecological framework for each landscape. Work within the native living communities: they are part of the natural succession of the landscape. Consider the soil, water budget, and cycles of life, growth, and rest. The more you deviate from the natural framework, the more issues you will need to manage. And...don't fuss with the soil. If you have the luxury to do so...then, GO SLOW."

- Dr. Fernando Agudelo-Silva Professor, Biology and Environmental Landscaping, College of Marin

# 1. Determine the Dominant Plant Community

### Which one best represents your landscape?

- Mixed Evergreen Forest
- Oak Woodland and Oak Savannah
- Bishop Pine forest
- Coast Redwood Forest
- Grassland
- Coastal Beach-dune Vegetation
- Northern coastal Scrub
- Chaparral
- Coastal Salt Marsh
- Coastal Riparian Forest
- Freshwater Marsh





# 2. Retain Native Habitat: Every Patch Counts!

- Foraging, resting, mating habitat for many diverse organisms
- Attracts pollinators
- Conserves native soil organisms
- Encourages native plant succession
- Requires minimal to no maintenance inputs

#### 3. Conserve And Increase Floral Resources

### = Conserve Biological Resources

#### How:

- Succession of blooms, diversity of flower colors and shapes
- Mostly native and portion non-native plants
- Nectar and pollen resources

#### Why:

- Boost Biodiversity
- Enhance natural pest control
- Attract and sustain predators and parasitoids, pollinators





### 4. Steward Soils and Keep Organic Matter On-site

- Healthy soil food web generates ecosystem services such as nutrient cycling, pest control, carbon sequestration
- Good soil structure retains water and promotes root growth – drought resiliency
- Improves overall plant health



## **Biological Assay**



#### Foodweb Analysis Soil

Report prepared for:

Linda J Novy & Assoc.

Linda Novy PO Box 969

Fairfax, CA 94978 USA

Report Sent: 8/22/2011

Sample#: 01-112247 | Submission:01-021566

Unique ID: SFW #1

Plant: ornamentals

For interpretation of this report please contact:

Soil Foodweb Oregon info@oregonfoodweb.com

(541) 752-5066

|                                                 |                | Invoice N                 | umber: 0                 |                        |                       |                           |                               |                                                                  |      |
|-------------------------------------------------|----------------|---------------------------|--------------------------|------------------------|-----------------------|---------------------------|-------------------------------|------------------------------------------------------------------|------|
| lindanovy@comcast.net Sample Received: 8/4/2011 |                |                           |                          |                        |                       | Consulting fees may apply |                               |                                                                  |      |
| Organism<br>Biomass Data                        | Dry Weight     | Active Bacteria<br>(µg/g) | Total Bacteria<br>(µg/g) | Active Fungi<br>(μg/g) | Total Fungi<br>(μg/g) | Hyphal<br>Diameter (µm)   | Classified by type            | # per gram or # pe<br>and identified to ger<br>no nematodes iden | nus. |
| Results                                         | 0.890          | 24.2                      | 671                      | 12.6                   | 372                   | 2.8                       | Bacterial Feeders             | 1.74                                                             |      |
| Comments                                        | Above Range    | Above range               | Above range              | Below range            | In range              |                           | Achromadora                   |                                                                  | 0.08 |
| Expected Low                                    | 0.45           | 5                         | 20                       | 40                     | 100                   |                           | Cephalobus<br>Monhystrella    |                                                                  | 0.68 |
| Range High                                      | 0.85           | 15                        | 250                      | 65                     | 500                   |                           | Plectus                       |                                                                  | 0.04 |
|                                                 | _              |                           |                          |                        |                       |                           | Prismatolalmus 0.17           |                                                                  |      |
| .                                               |                | rotozoa (Number           |                          | Total                  |                       | olonization (%)           | Prodesmodora<br>Rhabditidae   |                                                                  | 0.13 |
|                                                 | Flagellates    | Amoebae                   | Ciliates                 | Nematodes #/g          | ENDO                  | ECTO                      | Rhabdolalmus                  |                                                                  | 0.13 |
| Decelle                                         | F47F           | 51752                     | 65                       | 2.57                   | Not Ordered           | Not Ordered               | Fungal Feeders                | 0.59                                                             | 0.54 |
| Results                                         | 5175           |                           | -                        | 3.57                   | Not Ordered           | Not Ordered               | Thonus                        |                                                                  | 0.13 |
| Comments                                        | Low            | High                      | Good                     | Low                    |                       |                           | Tylencholalmus                |                                                                  | 0.47 |
| Expected Low                                    | 10000          | 10000                     | 50                       | 20                     | 40%                   | 40%                       | Fungal/Root Feeders           | 0.81                                                             |      |
| Range High                                      |                |                           | 100                      | 40                     | 80%                   | 80%                       | Aphelencholdes<br>Aphelenchus | Foliar nematode                                                  | 0.25 |
| Organism                                        | Total Eupai to | Active to Total           | Active to Total          | Active Fungi to        | Plant Available       | Actino                    | Flienchus                     |                                                                  | 0.51 |
| Biomass Ratios                                  |                | Fungi                     | Bacteria                 | Act.Bacteria           | N Supply              | Bacteria                  | Predatory                     | 0.04                                                             |      |
| Diomass ratios                                  | TOLDUCCHA      | rungi                     | Dactoria                 | Actibactoria           | (lbs/ac)              | (µg/g)                    | Clarkus                       |                                                                  | 0.04 |
| Results                                         | 0.55           | 0.03                      | 0.04                     | 0.52                   | 100-150               | 8.05                      |                               |                                                                  |      |
| Comments                                        | Low            | Low                       | Low                      | Low                    |                       |                           |                               |                                                                  |      |
| Expected Low                                    | 2              | 0.1                       | 0.1                      | 0.75                   |                       |                           |                               |                                                                  |      |
| Range High                                      | 5              | 0.15                      | 0.15                     | 1.5                    |                       |                           |                               |                                                                  |      |

# 5. Provide Appropriate Supplemental Irrigation

"Provide just enough water to keep natives hanging on and exotics from being stressed. Don't create overly moist conditions all the time – this leads to root rot. Most pathogens like warm and wet conditions."

-Steven Swain, Horticultural Advisor, Marin County, UC Extension – Marin and Sonoma Counties

### **Case Studies**

Examples of landscape management approaches where:

Plant community, native habitat, floral resources, soil management, irrigation, and a Plant Health Care program play important roles...

# Case Study #1 Ornamental Landscape With Bee Hives, Surrounded By Open Space Lands

- Dominant Plant Community: Oak woodland savannah and chaparral
- Native Habitat retained: Baccharis, Quercus agrifolia, Eriogonum sp.
- Floral Resources: Introduced Oak woodland/chaparral natives, boosted meadow w/wildflowers (bee pasture)
- Soil Stewardship: soil testing,
   AACT, perscription fertilization,
   compost and change mulch
- Irrigation and water
   management: smart controller,
   Netafim, professional water
   manager, deep root water



# Case Study #1 Plant Health Care and Integrated Pest Management

| Plant type                       | Pests                                     | Treatment action now                                                                  | Future                                | Plant Health Care                                                                                                                                                          |
|----------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Live Oak back of house           | Twig blight<br>(Cryptocline)<br>Pit scale | Pageant, Pristine fungicide<br>Hort oil for pit scale                                 | Monitor                               | Monitor water needs; 1 – 2 x's pick off infected leaves, when rains, prescription organic fertilization; root collar clearing annually air spade                           |
| Heritage oak toward swing        | Past: SOD                                 | Don't treat unless twig blight observed                                               | Monitor                               | Azomite application; root collar clearing                                                                                                                                  |
| Smaller Oak<br>adjacent to swing | Light twig blight                         | One app of Propiconazole fungicide                                                    | Shift to<br>less/non toxic<br>to bees | Infected leaves picked off 1 x Root collar clearing                                                                                                                        |
| Ceanothus                        | Defoliation                               | Analysis in lab                                                                       | TBD                                   | TBD                                                                                                                                                                        |
| Arbutus unedo and marina         | Canker?<br>leafminer                      | Treat with Agrifos                                                                    | Monitor                               | Prune one to ground leaving sprout; prune out other shrubs                                                                                                                 |
| Pyrus species Apple,<br>Toyon    | Fireblight                                | Treated with Badge –<br>(Copper)<br>(monitor for bee activity;<br>cover other plants) | Monitor                               | Prune out infected; on-going pick leaves up off ground and dispose green waste bin; deep root feed (low N) w/biochar. Prune again in August when the bacteria are dormant. |
| Manzanita (location – near house | Thrips                                    | Treat with Neem                                                                       | Monitor                               | Clear root collars; remove horse hair mulch, and mulch w/chips                                                                                                             |
| Redbuds (1)                      | Scale (variety<br>TBD)                    | Treated with Astro (Permethrin), toxic to bees – change product to Neem               | Monitor                               | Pruned out infected branches on one tree and other dead on remaining trees.                                                                                                |

## Disease In Oak; Making A Bee Meadow







# Case Study #2 Ornamental Landscape Surrounded By Open Space Lands

- Dominant Plant Community: Oak woodland Forest and Oak woodland savannah
- Native Habitat retained: One specimen Quercus lobata and a few native shrubs
- Floral Resources: minimal
- Soil Stewardship: Detrimental. Chemical fertilizer, no testing
- Irrigation and water management: DYI drip system, no management system
- Pest Management: Calendar spraying and injections with "big hammers"
- All landscape: Chemical fertilization 1x year, including Valley Oak
- Oaks and some shrubs: Fungicide spraying Cleary's 3336 foliar spray and spray oil 2x annual
- Roses: 1x systemic insecticide Imidicloprid, 7x fungicide and insecticide;
   dormant 2x
- Fruit trees: Copper and Oil dormant spray

### Case Study #2: Recommendations

- Point out negative feedback loop: boost nitrogen rich leaves, boost plant eating insect populations, need to treat, but then disrupt/kill beneficial insects
- Provide Bay Friendly Gardening handbook
- Recommend a true IPM program with monitoring, and OMRI certified products
- Recommend Plant Health Care program: compost, mulch, organic fertilizers
- Stop fertilizing the Oak
- Soil analysis and perscription fertilization
- Stop using Imidacloprid, a Neonicotinoid

# Case Study #3: Ornamental Landscape Near Freeways

- Dominant Plant Community: San Bruno Mountain dunes, grasslands, fog influence
- Native Habitat retained: minimal; new landscaping boosting biodiversity, focus on endangered plant species
- Floral Resources: Sage communities, dense habitats and corridors
- **Soil Stewardship**: Was chemical, shift to organics based upon biological and chemical testing
- Irrigation: old and inefficient spray; brought in top water management company and transitioning to Netafim
- Historical Pest Management: Years of high N chemical fertilization, mites/thrips, black vine weevil not managed. Introduced monitoring and OMRI treatments provided by Arborist. Soil Plant Lab services analyze Maples

# Case Study #3: Plant Health Care and Integrated Pest Management

| Plant type                      | Pests                                                                                   | Treatment action                                                | Future  | Plant Health Care                             |
|---------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------|-----------------------------------------------|
| Japanese Maples                 | Phoma (Soil Plant<br>Lab tissue and soil<br>analysis)<br>Low soil nutrients,<br>espc. N | Prune off<br>diseased tissue                                    | Monitor | Provide proper irrigation and plant nutrition |
| Rhododendrons                   | Mites                                                                                   | "Conserve" – key ingredient is Spinosad, a natural insecticide. | Monitor | Provide proper irrigation and plant nutrition |
| Woody shrubs,<br>mostly Rhodies | Black vine weevil                                                                       | Monitor, trap,<br>nematode drench                               | Monitor | Chose weevil<br>resistant<br>Rhododendrons    |



# Case Study #3







# Case Study #4: Ornamental and Native Landscape

- Dominant Plant Community: Coast Live Oak –California Bay-Madrone Forest; Coastal Riparian Forest
- Native Habitat retained: Significant valley oaks, bays, buckeyes;
- **New landscaping**: Deer resistant natives, encouraging plant succession (oaks, madrones, Baccharis, Stipa and Festuca)
- Floral Resources: Native hedges, riparian planting corridor, Baccharis, Sage, Rhamnus, Holodiscus, Symphoricarpus, and more
- **Soil Stewardship**: Transition from thistle to native meadow; Make hot compost and apply to all plants; re-mineralize soil; organic fertilizer to fruit trees and vegetable garden only.
- Irrigation: All drip, mostly Netafim transition, ET Water smart controller.

# Case Study #4: :Plant Health Care and Integrated Pest Management:

| Plant type | Pests                | Treatment action                                                    | Future                      | Plant Health Care                                                        |
|------------|----------------------|---------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------|
| Live Oaks  | SOD                  | Agrifos 2x annually                                                 | Monitor                     | Clear root collars,<br>apply compost &<br>Azomite 1 x annually           |
| Oregon Ash | 1x Caterpillars      | Conserve (Spinosad)                                                 | Monitor                     | Occasional water                                                         |
| Apple tree | 1x Apricot Scale     | Prune off most<br>diseased; 1x<br>Neem (Triac2, OMRI<br>certified.) | Monitor                     | Deep root organic fert,<br>every other year, drip<br>irrigation, compost |
| Apple/pear | Codling Moth, Fungus | 2x hort oil, Copper                                                 | Monitor; codling moth traps | Same as above;<br>Clean up leaf litter<br>after fall                     |
| Throughout | Weeds                | Hand pull before seed                                               | Monitor                     | Boost vegetative cover, mulch                                            |

# Case Study #4



# Case Study #5: Native and Ornamental Landscape

- Dominant Plant Community: Oak Savannah
- Native Habitat retained: Some Valley and Live Oaks, Buckeyes; Toyons, Baccharis sp., Salix sp.
- New landscaping: Transition lawns to native plants
- Floral Resources: Native hedges, riparian planting corridor, reduced hedging to allow bloom, perennials
- Soil Stewardship: Soil testing, mycorrhizae and biochar to new planting, compost
- Irrigation: spray lawns and Netafim beds; reclaimed water, smart controller

# Case Study #5: Plant Health Care and Pest Management:

| Plant type      | Pests            | Treatment action                    | Future                                          | Plant Health Care                                             |
|-----------------|------------------|-------------------------------------|-------------------------------------------------|---------------------------------------------------------------|
| Live Oaks       | SOD              | Agrifos 2x<br>annually              | Monitor                                         | Clear root collars,<br>apply compost &<br>Azomite             |
| Hawthorne trees | Ambrosia beetles | Remove all trees                    | Monitor                                         | Replaced with Cercis, more resistant, and improved irrigation |
| Sycamore Trees  | Anthracnose      | Cultural actions due to parking lot | Monitor                                         | Deep root water, irrigate, mulch                              |
| Live Oaks       | White Fly        | Allow natural predators             | Monitor                                         | Live Oaks                                                     |
| Lawns           | Kikuyu Grass     | Pull, spray; clean<br>mow equipment | Eliminate lawns,<br>treat Kikuyu<br>w/herbicide | Maintain 2 remaining turf areas organically                   |

## Case Study #5









- 1. Plan
- ✓ Inventory your landscape and refine vision
- ✓ Boost habitat value by planting native plants and other floral resources
- ✓ Draw a simple site plan
- ✓ Perform chemical and biological soil analysis

2. Start a materials cycling system versus removing organic materials from the site



## Organic Matter Cycling

Green
Waste Bin

**Worm Bins** 

Thermophylic Compost

Passive Compost Pile, Leaf Mold Bin & On-Site Chipper

- 3. Plant Health Care and IPM
- ✓ Final pruning: Fireblight
- ✓ Deep watering: non-irrigated pines, birches, oaks, redwoods, plants w/compromised roots
- ✓ Clear root collars
- ✓ Apply compost/mulch
- ✓ Remove leaf litter: roses, fruit trees

- 4. With a Certified Arborist, monitor trees and woody shrubs:
- ✓ Symptoms of beetles/borers
- ✓ Oak leaf or oak branch die back
- ✓ Fire blight
- **✓** SOD
- ✓ Note: most insects stop flying in Sept/Oct.eggs laid, overwintering — (Cal. Oak moth flight in October 2013...!)

- 5. Plan for IPM Treatments by a Certified Arborist or licensed Pest Control Professional
- ✓ SOD (Oaks)
- ✓ Dormant Oil, Copper (Fruit trees)
- ✓ Dormant & Horticultural Oils (variety of trees/shrubs)
- ✓ Refer to UC IPM guidelines



"That land is a community is the basic concept of ecology, but that land is to be loved and respected is an extension of ethics.

That land yields a cultural harvest is a fact long known, but latterly often forgotten."